木製釘のせん断耐力に関する基礎的研究

清水研究室(建築・住居分野) A20AB125 村井柚美

研究背景•目的

背景

鉄釘による木造住宅の耐力壁

- ◎ 初期剛性・靱性能を高くできる工法として多くの建物で 用いられている
- × 近年、環境保護の観点から、建設廃棄物のサイクルが 求められ、廃棄時の木材との分別の手間が問題視

解決策

- ・木製釘が開発された
- 耐震性能は明らかとなっていない

木製釘を用いた耐力壁の可能性を検証する

釘単体のせん断実験

耐力壁の解析

荷重変形関係から耐力壁の壁倍率を確認

実験概要

木製釘の荷重-変位関係を把握する為、耐力壁のファスナー部を想定した釘のせん断実験を実施した

試験体詳細

・パラメータは面材2種類、各8体 計16体実施。

項目	仕様詳細				
接合部位	主材-側材				
試料	名称:LIGNOLOC4.7×58				
	寸法:胴経4.7mm、長さ58mm				
主材	種類:SPF製材				
	寸法:38×89mm、長さ320mm				
側材	種類: <u>石こうボード、構造用合板</u>				
	寸法:9.5mm(石こうボード)、長さ200mm				
	寸法:9.0mm(構造用合板)、長さ200mm				

木製釘「LIGNOLOC(リグノロック)」

・ブナ(オーストリア)の細胞構造を圧縮し、樹脂を浸透させ 硬化圧縮した。

実験方法

- ・木製釘は、鉄釘より初期剛性・靱性能が高くないと考えられる為、釘を<mark>2面せん断</mark>とすることができるMidply shear wall を 想定し、表・裏から1本ずつ釘打ち機にて施工する。
- ・加力速度2.0mm/minの一方向単調加力を与え、最大荷重の0.8倍まで耐力が低下するまで行う。
- 万能試験機にSPF材はボルト、面材はピンを介して留め付け、曲げモーメントが作用しないよう設置する。

実験結果

・構造用合板: 初期剛性・最大耐力が高く、終局変位は4.71mmとそれほど高くない。

- ・石こうボード:初期剛性・最大耐力はそれほど高くはないが、終局変位が12.59mmと<mark>靱性能</mark>がある。
- ・塑性率は両面材とも約10程度と高い値となり、大きな差が見られない。
- ・<mark>破壊性状は大きく違い</mark>、構造用合板では釘の破断が生じ、石こうボードでは釘が破断することなく面材の損傷によって 最大耐力が決定したと考えられる。

解析

木製釘を用いた耐力壁の可能性を検証するため、任意釘配列とした耐力壁の荷重変形関係を算出する。

- ・ <mark>実験結果のグレー箇所の値を用いて</mark>、式(1)~(10)より耐力壁の水平力Pと壁の水平変形 Δ は面材の回転角について増分計算より得られ、添え字 β は増分計算のステップを表す。
- ・最外縁の釘からX.Y両方向の中立軸までの距離を算出し、釘の変位を求める。
- ・釘にかかるモーメントを算出し、全ての釘で実施し、モーメントの総和を壁高さHで除することで水平力Pとなる。

釘ピッチ@125mm

- ・壁倍率を求める4指標 $(P_y, P_u(0.2/D_s), 2/3 P_{max}, P_{1/120})$ と、4指標の中で最も小さい値となる短期基準せん断耐力 P_0 を示す。
- 標準寸法である横910mm、縦2730mmの面材に対して、釘ピッチを@125mmとすることで、どちらの面材共に壁倍率
 1.0以上とできることが明らかとなった。
- ・壁倍率は、両面材とも $2/3 P_{max}$ で決定しており、木製釘の本数を増やすことと<mark>靱性能を高める</mark>ことで、より高い壁倍率となる。

試験体名	降伏耐力 P _y (kN)	終局耐力 0.2P _u /D _s (kN)	最大耐力 2/3P _{max} (kN)	特定変形時 耐力 P _{1/120} (kN)	塑性率 μ	構造特性 係数 D _s	短期基準 せん断耐力 P。 (kN)	壁倍率
構造用合板	6.33	6.11	4.72	6.85	9.81	0.23	4.72	2.65
石こうボード	3.12	3.09	2.32	3.47	10.32	0.23	2.32	1.30

まとめ

- ・木製釘を用いた耐力壁が壁倍率を得られるか確認するため、釘単体のせん断実験と耐力壁の解析を行った。
- ・実験より釘単体の荷重変位関係が得られ、木釘を用いた標準寸法の耐力壁でも壁倍率1.0以上とできることが確認された。