木製釘のせん断耐力に関する基礎的研究

清水研究室（建築•住居分野）A20AB125 村井柚美

研究背景•目的

背是

鉄釘による木造住宅の耐力壁

初期剛性•靭性能を高くできる工法として多くの建物で用いられている
\times 近年，環境保護の観点から，建設廃棄物のサイクルが求められ，廃棄時の木材との分別の手間が問題視

解決策

- 木製釘が開発された
- 耐震性能は明らかとなっていない

木製釘を用いた耐力壁の可能性を検証する

釘単体のせん断実験
耐力壁の解析
荷重変形関係から耐力壁の壁倍率を確認

実験概要

木製釘の荷重－変位関係を把握する為，耐力壁のファスナ一部を想定した釘のせん断実験を実施した

試験体識細

－パラメータは面材2種類，各8体 計16体実施。

項目	仕樣詳細
接合部位	主材 - 側材
試料	名称 $:$ LIGNOLOC 4.7×58 寸法 $:$ 胴経4．7mm，長さ 58 mm
主材	種類：SPF製材 法 $: 38 \times 89 \mathrm{~mm}$ ，長さ 320 mm
側材	種類：石こうボード，構造用合板 寸法 $: 9.5 \mathrm{~mm}$（石こうボード），長さ 200 mm 寸法： 9.0 mm （構造用合板），長さ 200 mm

木製釘「LIGNOLOC（リグノロック）」

－ブナ（オーストリア）の細胞構造を圧縮し，樹脂を浸透させ

硬化圧縮した。

実験方法

－木製釘は，鉄釘より初期剛性•靭性能が高くないと考えられる為，釘を2面せん断とすることができるMidply shear wallを想定し，表•裏から1本ずつ釘打ち機にて施工する。

- 加力速度 $2.0 \mathrm{~mm} / \mathrm{min}$ の一方向単調加力を与え，最大荷重の 0.8 倍まで耐力が低下するまで行う。
- 万能試験機にSPF材はボルト，面材はピンを介して留め付け，曲げモーメントが作用しないよう設置する。

実験結皆

- 構造用合板 ：初期剛性•最大耐力が高く，終局変位は4．71mmとそれほど高くない。
- 石こうボード：初期剛性•最大耐力はそれほど高くはないが，終局変位が 12.59 mm と靵性能がある。
- 塑性率は両面材とも約10程度と高い値となり，大きな差が見られない。
- 破壊性状は大きく違い，構造用合板では釘の破断が生じ，石こうボードでは釘が破断することなく面材の損傷によって最大耐力が決定したと考えられる。

試験体名	$\begin{gathered} \text { 隆伏耐力 } \\ P_{y} \\ (k N) \end{gathered}$	終局耐力 P_{u} （kN）	$\begin{gathered} \text { 最大耐力 } \\ 2 / 3 P_{\text {max }} \\ (\mathrm{KN}) \end{gathered}$	短期基準 せん断耐力 Po （kN）	最大耐力 $P_{\text {max }}$ （kN）	降伏変位 δ_{y} （mm）	降伏変位 δ_{v} （mm）	$\begin{gathered} \text { 終局変位 } \\ \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 塑性率 } \\ \mu \end{gathered}$	構造特性 係数 D_{s}	$\begin{gathered} \text { 初期剛性 } \\ K \\ (k N / m m) \end{gathered}$
構造用合板	0.61	1.08	0.82	0.51	1.23	0.27	0.48	4.71	9.81	0.26	2.25
石⿳亠口⿳亠口冖口⺝刂゙ード	0.36	0.53	0.40	0.31	0.60	0.83	1.22	12.59	10.35	0.23	0.44

解析
木製釘を用いた耐力壁の可能性を検証するため，任意釘配列とした耐力壁の荷重変形関係を算出する。
$P \cdot H={ }_{j} M_{x}={ }_{j} M_{y}$
$\Delta={ }_{j} \theta \cdot H$
${ }_{j} M_{x}=\sum_{i}{ }_{j} S_{x . i} \cdot l_{y . i}$
${ }_{j} M_{y}=\sum_{i}{ }_{j} S_{y . i} \cdot l_{x . i}$
${ }_{j} S_{x, i}={ }_{j} s_{i} \cdot \frac{\delta_{x, i}}{{ }_{j} \delta_{i}}$
${ }_{j} s_{y . i}={ }_{j} s_{i} \cdot \frac{{ }_{j} \delta_{y . i}}{{ }_{j} \delta_{i}}$
（6）
${ }_{j} \delta_{x, i}=l_{y, i} \cdot{ }_{j} \theta_{x}$
${ }_{j} \delta_{y . i}=l_{x . i} \cdot{ }_{i} \theta_{y}$
${ }_{j} \delta_{i}=\sqrt{{ }_{j} \delta_{x . i}{ }^{2}+{ }_{j} \delta_{y \cdot i}{ }^{2}}$
${ }_{j} \theta={ }_{j} \theta_{x}+{ }_{j} \theta_{y}$

- 910（幅）$\times 2730 \mathrm{~mm}$（高さ）の耐力壁を想定
- SPFを用いたMidply shear wall
- 面材釘の配列は上下対称かつ左右対称
- 降伏耐力 P_{y} は最外縁の釘が降伏変位に達する時
－実験結果のグレ一箇所の値を用いて，式（1）～（10）より耐力壁の水平力 P と壁の水平変形 Δ は面材の回転角について増分計算より得られ，添え字 j は増分計算のステップを表す。
- 最外縁の釘からX，Y両方向の中立軸までの距離を算出し，釘の変位を求める。
- 釘にかかるモーメントを算出し，全ての釘で実施し，モーメントの総和を壁高さ H で除することで水平力 P となる。

釘ピッチ＠125mm

－壁倍率を求める4指標（ $\left.P_{y}, ~ P_{u}\left(0.2 / D_{s}\right), ~ 2 / 3 P_{\max }, ~ P_{1 / 120}\right)$ と，4指標の中で最も小さい値となる短期基準せん断耐力 P_{0} を示す。
－標準寸法である横 910 mm ，縦 2730 mm の面材に対して，釘 ピッチを＠125mmとすることで，どちらの面材共に壁倍率 1．0以上とできることが明らかとなった。
－壁倍率は，両面材とも $2 / 3 P_{\max }$ で決定しており，木製釘の本数を増やすことと靭性能を高めることで，より高い壁倍率となる。

まとめ

- 木製釘を用いた耐力壁が壁倍率を得られるか確認するため，釘単体のせん断実験と耐力壁の解析を行った。
- 実験より釘単体の荷重変位関係が得られ，木釘を用いた標準寸法の耐力壁でも壁倍率1．0以上とできることが確認された。

